INSTABILITY OF A NON-SELF-MAINTAINED DISCHARGE
INITIATED BY PULSED IONIZATION

V. A. Feoktistov UDC 537.525

It is well known that in non-self-maintained discharge, both steady-state and pulsed, instabilities develop
which lead to spark breakdown. The different mechanisms responsible for instability in a steady-state dis-
charge have been discussed, for example, in [1-5]. In particular, in [2] the effect of multistage ionization on
the time increase of the electron concentration in the discharge to which a steady source of ionization is applied
is considered. The problem of the instability in a discharge induced by pulsed ionization has been considered
to a much less extent [6, 7]. The purpose of the present paper is to investigate the possibility of an unstable
increase in the electron concentration after switching off the ionization source within the framework of the re-
sults obtained in [2].

The initial system of equations is similar to that described in [2] and consists cf the electron balance
equation and the excited-particle balance equation. However, unlike [2], where the equations for the electrons
are considered in the quasistationary approximation, here we take into account the derivative dne/dt, where ng
is the electron density. In the excited-particle balance equation, as in [2] we neglect quenching collisions and
"depletion” of excited particles due to multistage ionization. Hence, we have

d—:]f =2 Q 4 kyngn — Bl — y Nn,,
dnidt = k,Nn,,

1)

where n is the number of excited particles; ky and ky are the rate constants of excitation of the molecule by
electron collision and ionization of the excited molecules; 8 and y are the recombination and capture coeffic-
ients; and Q is the number of ions produced by the sources of ionization per unit volume of the gas in unit
time. If the instant when the ionizing source is switched off is taken as the origin of the time measurement,
then by considering the transient after the source is switched off in (1) we must put @=0, in which case

ne(0) #0 and n(0) #0. In this formulation the solution of system (1) is considered separately for the capture
mode (8= 0) and recombination mode (y =0). Since in the capture case the condition for ng and n to increase
depends on the ratio of the initial values ng(0) and n(0), in order to check the realization of this relation when
the source of ionization acts system (1) is considered for the capture mode and for Q =0, in which case ne (0) =
n(0) =0, since the initial instant of time coincides with the instant when the ionization source is switched on.

1. The Recombination Mode. Expanding system (1) in terms of n and reducing the order of the equation,
the following relation connecting the variables ng and n at an arbitrary instant of time can be obtained:

ki ¥n, = (k/a)(n — 1/a) + Ce—en, 2

where C= (kyne(0)N— (ky/a) [n(())—l/a])ean(o); a=p/kN, It is assumed that k,n(0) < Bneg(0), and at the initial in-
stant the electron concentration is reduced {the case when kyn(0) > Bng(0) leads to an obvious increase in Ne
after the source is switched off],

We will find the condition that at a certain instant (t=t;) the relation dne/dt =0 is satisfied. Substituting
ne = (ky/B)n into Eq, (2), we obtain an equation for n at this point:

n(é) = (—li- In GT? (3)

From the condition n > 0 we obtain

(Bre(0) — Fan(0)) -1+ B NIR > (kN Ble=an. @
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Takipg into account.the condition kyn(0) <fne(0), it is seen that inequality (4) is always satisfied. This means
that within the framework of the model employed, after the source of ionization is switched off the electron
concentration first falls, but then reaches a minimum and then increases without limit. In fact, for sufficiently
large n, from Eq.(2) we have kNn,~ (k,/a)(n—1a), in which case kyn > Bng, so that dne/dt >0, Since (kyn—
fne) = ki{k,N/B, asymptotically, it follows from Eq, (1) that.the increase in ne-ogeurs exponentially with con-
stant A/kjk,N. As regards order of magnitude, the time t; for the instabilityto develop is made up of the time
t, taken for the electron concentration to reach the minimum and the exponential rise time. For given ng(0) and
n(0), the time t; can be
e y -1
t, = \ [lﬁ(n — L) -+ Ce’a"] dn.
71('0) a a

We will estimate the time t; in nitrogen as it applies to the experimental conditions in [8], in which for
E/fp~(20-30) V/cm -mm Hg, values of the retardation time of spark breakdown ty are given. Since this com-
parison is purely an estimate, we will assume that the time t; in the model problem described by system (1)
is determined by the characteristic time parameter R/kjk,N, assuming in this case that multistage ionization
in nitrogen occurs with greatest probability from the metastable level A3Z‘u*, Using the data given in [9] for
the rate constants of excitation of this level and ionization from it, we obtain, in particular, for E/p~20 Vem-
mm Hg, t;~ 8/kkoeN~3-10"7 sec (here wehave put § =2-107" cmYsec and N=2.102 cm¥), which agrees in order
of magnitude with the delay time of spark breakdown given in {8], whichhas a value of the order of 10~ sec for the
same value of the field, The experimentally observed strong dependence of the time tq on the field in this model
can be explained by the sharp dependence of the product kik, on E/p.

2. The Capture Mode, We will also consider the solution of system (1) in this case when dne(o)/dt<0.
The nature of the solution depends on the sign of A, defined by the following expression:

A = (1/2)(Fyn(0) — yN)2 — k kN1, (0). (5)
If A >0, the solution for n, has the form
t + By = o(n,), (6)

where

3 By == @ {n(0).

1 VAL kky Nne—V A
n,) = —In (T2 e
ol L£Z {VA +kky Nng - VA

It is seen from (6) that n approaches zero monotonically as t—«, If A <0, we have for ne and n

ndty = AL L (1 Tl — ) 1]

) = 2 4 V2 AL o [/ T ),

‘2

(M

where B, = %arctah%—:%m< 0. It follows from (7) that when t= |B, !, ng reaches a minimum and then

increases without limit, the increase having an explosive character. The time taken for ne and n to become
infinite is ti- [B,|+=/} 2]4]. The neglect of the "depletion” of the excited particle in (1) at the instant whenng in-
creasesng(t=|B,!) is justified if ky >y, In addition, the time t; must be much less than the time of quenching
collisions when excited particles collide with gas molecules.

In order that the mechanism considered should in fact lead to explosive development of electrons after
the ionization source is switched off, it is necessary to show that after the time for which the source acts the
condition A <0 is realized, For this purpose we solved system (1) for Q#0 and ng(0)=n(0)=0, When t=Ty=
YN 2Kk, Q the solution has the form

)=y [¢ 4—;;-(1 — 'Tt‘) + F¥() ] n) = X+ £ Fo).

(8)
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where

L £ \Y2 Iy (23— DI, (3)) .
RO = 31— 7)) ey T

136 —

‘T £ N2 Ty aGe) L) — (O
2(t) =§—‘(1 - —1) i D= I G0+ Ty (~o)>o o= ()

and 1,(z) is the cylindrical function of imaginary argument. Equation (8) generalizes the quasistationary solu-
tion given in [2], obtained assuming that dng/dt =0 and holding in the region T, <« t< Ty for arbitrary ratios
between Ty and T,. Assuming the functions I.y/3 and I/ to be positive and taking into account the nature of
their variation in the region 0=z =z,, it can be shown that the solutions {8) for ne and n have singularities. If
t=Ty, we have for n, and n

NN LI B Sy =¥ _ 2 @
n0 =i [ = (F—1)+o 0} ro=¥-Low,
where
= 1 (¢ 172 (J_z/s (.l/)"“DJQ,/g (y))
D) = o7, (T1 ! (i) =Di_y5)°
ATt \3/2
v=sr(m—1)"

and Jy{y) is the cylindrical function of the first kind. The solution (9) has a singularity at the point defined by
the following equation:

J1s(y) + DI_y5(y) = 0, (10)

where the constant D lies in the interval 1=D< « when the parameters T, and T, vary. Using tabulated values
of the functions Jy/3 and J_4/;, it can be shown that for any values of D in this interval the least root y, of Eq.
(10) lies in the limits 1.8<y;=2.,4, Putting y(=2 approx1 /'xtel , we obtain an estimate for the time t; taken
for the instability to develop when Q¢0(t' Ty) > 3.3 T2 3 T1 If Ty < Ty, we have t'; ® Ty, which is practically
identical with the results obtained in [2]. When T, > T, we have t'{~3.3 T}/ T3> 1.

We will use the solutions (8) and (9) to analyze whether the condition A <0 is satisfied at the stage when
the ionization source acts. If we introduce the function A(t) = (1/2) [nky—yN12—kk,Nng, it is seen from (8) and
(9) that at an arbitrary instant of time it is given by the expression

(11)
)

A(t) = 73 (1 —

As follows from Eq. (11), A(t) =0 when t= T and A(t) <0 when t > T;, This means that if the duration of
the ionization source T is less than the characteristic ftime T, and the quantity A(t =T), which determines the
constant A in (5), is positive, after switching off the ionization source the concentration of the electrons and
excited particles approaches zero, To obtain an unlimited increase in ne and n after switching off the ioniza-
tion, it is necessary for the duration of the ionizing source to exceed the time Ty,

Since the delay time of the instability t; after switching off the source is of the order [A (t=T)]‘1/2, taking
(11) into account, it is defined by the ratio between the times T, Ty, and Ty, In particular, if T =T, +AT, where
AT <« Ty, we have tj ~ To(T/AT)L2 > T,.

The author thanks I, V. Tyutin for participating in a discussion and for analyzing the solutions obtained,
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ORIGINATION OF A SELF-OSCILLATING MODE (MAGNETIC
STRIATIONS) IN A NONEQUILIBRIUM MAGNETIZED PLASMA

V. M. Zubtsov, O. A. Sinkevich, UDC 533.951
and V. T, Chuklova

In this paper, quantitative computations of the nonlinear solution of the problem of ionization instabilify
development in a bounded domain [1], performed by the Lyapunov—Schmidt method [2], are presented. The
amplitude of the self-oscillations is computed, the domains of the hard and soft modes of the loss of stability
are isolated, a distribution of the electron density and electrical current over the channel section is constructed
for the soft mode of the loss of stability — nonlinear magnetic striations. The topology of the striations in the
post-critical domain is discussed., It is shown that the maximum of the steady-state wave amplitudes does not
correspond to that wave which first lost stability. The results obtained are used for a qualitative analysis of
experimental results with a nonequilibrium magnetized plasma in a magnetic field (the existence of oscilla-
tions at small wavelengths in a full ionization mode of the admixture).

§1. Let us examine the behavior of a nonequilibrium magnetized plasma in a domain bounded by two non-
conducting walls x =0 and x =b, which are infinite in the y direction. The magnetic field induction vector is
directed along the z axis. Let us assume the parameters of heavy particles (atoms and ions) to be independent
of the coordinates and time, while the ionization equilibrium build-up time is considerably less than the char-
acteristic time of the problem. We consider the Reynolds magnetic number small and we neglect the effects
of radiation, Taking account of these assumptions, the system of equations describing the state of the medium
reduces to a dimensionless system of n partial differential equations in the potential ®n and the electron con-
centration ®, [1]. The system is solved by the method of a series expansion in the small supercriticality
parameter & =(2-27) /Q~1, In a zero approximation (n=0) the system has the form

L@y + L356, = 0, L@y + L3:0, =0 (t.1)
with the boundary conditions (see [3})
@,(0, V) = @1, Y) = 0, 8,00, Y) = B(1. Y¥) =0, (1.2)
where LYy = o — K} LYy = — ayl — ik, O

Ly =205 L= — ALY +fi ¥ =y + Wot;

A is a small parameter; Q" is the critical Hall parameter; k is the wave vector; and a; and f; are constant
factors (1, 41.

The solution of (1.1) with the boundary conditions (1.2) can be represented in the form
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